Lesson Plan

Name of the Faculty	:	Dr. Rajender Kumar Tayal
Discipline	:	Mechanical Engineering
Semester	:	5 th
Subject	:	Theory of Machines (TOM)
Lesson Plan duration	:	17 weeks (15.09.2022 to 16.01.2023)
Work load per week	:	Lecture – 03, Practical – 02

Week	Theory			EXECUTION	
	Lecture Day	Topic (Including assessment/test)	Date	Sign.	
1 st	1 st				
	2 nd	1 Simple Mechanisms: 1.1 Kinematics of Machines: - Definition of Kinematics, Dynamics, Statics, Kinetics, Kinematic link, Kinematic Pair and its types			
		1.1 Constrained motion and its types, Kinematic chain and its types			
2^{nd}	4^{th}	1.1 Mechanism, inversion, machine and structure.			
	5 th	1.2 Inversions of Kinematic Chain: Inversion of four bar chain, coupled wheels of Locomotive & Pantograph.			
	6 th	1.2 Inversion of Single Slider Crank chain- Rotary I.C. Engines mechanism, Crank and Slotted lever quick return mechanism.			
3 rd	7 th	1.2 Inversion of Double Slider Crank Chain- Scotch Yoke Mechanism & Oldham's Coupling.			
	8 th	 2 Power Transmission: 2.1 Introduction to Belt and Rope drives. 2.2 Types of belt drives. 			
	9 th	2.3 Concept of velocity ratio, slip and creep; crowning of pulleys (simple numericals)			
4 th	10 th	2.4 Flat and V belt drive: Ratio of driving tensions, power transmitted, centrifugal tension, and condition for maximum horse power (simple numericals)			
	11 th	2.4 (simple numericals)2.5 Different types of chains and their terminology			

5 th	13 th	2.6 Gear Drive - Simple, compound, reverted and epicyclic	
	, ,th	gear trains (simple numericals)	
	14^{th}	2.7 Relative advantages and disadvantages of various drives	
	15^{th}	3. Flywheel:	
	15	3.1 Principle and applications of flywheel	
6 th	16 th	3.2 Turning - moment diagram of flywheel for different	
Ŭ	10	engines.	
	17^{th}	3.3 Fluctuation of speed and fluctuation of energy - Concept	
		only.	
	18^{th}	3.4 Coefficient of fluctuation of speed and coefficient of	
th	th	fluctuation of energy.	
7 th	19 th	1 st sessional test (Tentative)	
	aoth		
	20 th	Assessment	
	21 st	4. Governor:	
	21	4.1 Function of a governor, comparison of flywheel and	
		governor.	
8 th	22^{nd}	4.2 Simple description and working of Watt governor,	
	$23^{\rm rd}$	4.2 Simple description and working of Porter governor,	
	24^{th}	4.2 Simple description and working of Hartnel governor,	
oth	o r th		
9 th	25^{th}	4.2 Simple numerical based on watt and porter governor	
	26^{th}	4.3 Terminology used in governors: Height, equilibrium	
	20	speed, Hunting,	
		speed, manning,	
	27^{th}	4.3 Terminology used in governors: isochronisms stability,	
		sensitiveness of a governor.	
10 th	28^{th}	5. Cams:	
		5.1 Definition and function of cam. Description of different	
	29 th	types of cams and followers with simple line diagram.	
	29	5.1 Description of different types of cams and followers with	
	30 th	simple line diagram. 5.2 Terminology of cam profile.	
	50	5.2 Terminology of earli prome.	
11 th	31 st	5.3 Displacement diagram for uniform velocity.	
	32 nd	5.3 Displacement diagram for S.H.M.	
	33 rd	5.3 Displacement diagram for uniform acceleration and	
		deceleration.	

12 th	34 th	2 nd sessional test (Tentative)	
	35 th	Assessment	
	35	Assessment	
	36 th	6. Balancing:	
		6.1 Need of balancing, Concept of static and dynamic	
13 th	37 th	balancing. 6.1 Need of balancing, Concept of static and dynamic	
15		balancing.	
	38^{th}	6.2 Introduction to balancing of rotating masses in the same	
	aoth	plane and different Planes (simple numericals)	
	39 th	6.2 Introduction to balancing of rotating masses in the same plane and different Planes (simple numericals)	
14 th	40^{th}	6.2 Introduction to balancing of rotating masses in the same	
11	10	plane and different Planes (simple numericals)	
	41 st	6.2 Introduction to balancing of rotating masses in the same	
	i - nd	plane and different Planes (simple numericals)	
	42^{nd}	7. Vibrations:	
		7.1 Causes of vibrations in machines, Their harmful effects and remedies	
15 th	$43^{\rm rd}$	7.2 Types-longitudinal, transverse and torsional vibrations.	
	4 4th		
	44^{th}	7.2 Types-longitudinal, transverse and torsional vibrations.	
	45^{th}	7.3 Damping of vibrations	
th	th		
16^{th}	46 th	3 rd sessional test (Tentative)	
	47^{th}	Assessment	
	48^{th}	Revision	
17 th	49^{th}	Revision	
1/			
	50 th	Revision	
	51 st	Revision	
	31	KEVISIOII	

Lesson Plan

Name of the Faculty	:	Dr. Rajender Kumar Tayal
Discipline	:	Mechanical Engineering
Semester	:	5 th
Subject	:	Theory of Machines (TOM)
Lesson Plan duration	:	17 weeks (15.09.2022 to 16.01.2023)
Work load per week	:	Lecture – 03, Practical – 02

Week			Η	EXECUTION	[
	Practical Day	Topic	G1	G2	Sign.
1 st	Day 1 st	Introduction about the Lab & brief discussion over the Lab practical's to be conducted.			
2 nd	2 nd	1. To study inversion of Four Bar Mechanism, Single Slider Crank Chain Mechanism and Double Slider Crank Chain Mechanism with the help of working models.			
3 rd	3 rd	1. To study inversion of Four Bar Mechanism, Single Slider Crank Chain Mechanism and Double Slider Crank Chain Mechanism with the help of working models			
4 th	4 th	2. To study various kinds of belts drives and gear trains with the help of working models.			
5 th	5 th	2. To study various kinds of belts drives and gear trains with the help of working models.			
6 th	6 th	3. To find the moment of inertia of a flywheel.			
7 th	7 th	Checking of Practical file/ 1st sessional test (Tentative)			
8 th	8 th	4. To Study the different types of centrifugal governors & to plot graph between R.P.M & Displacement.			

th	th	1		
9 th	9 th	4. To Study the different types of		
		centrifugal governors & to plot graph		
		between R.P.M & Displacement.		
10^{th}	10^{th}	5. To construct cam profile for		
		uniform velocity, SHM and uniform		
		acceleration and retardation on		
		drawing sheet.		
11 th	11 th	Checking of Practical file/		
		2nd sessional test (Tentative)		
12 th	12^{th}	5. To construct cam profile for		
		uniform velocity, SHM and uniform		
		acceleration and retardation on		
th	th	drawing sheet.		
13 th	13 th	5. To construct cam profile for		
		uniform velocity, SHM and uniform		
		acceleration and retardation on		
1.4th	1.4th	drawing sheet.		
14 th	14^{th}	6. To perform the experiment of		
		Balancing of rotating parts and find		
		the unbalanced couple and forces.		
15 th	15 th	6. To perform the experiment of		
15	10	Balancing of rotating parts and find		
		the unbalanced couple and forces.		
16 th	16^{th}	Checking of Practical file/		
10	10	Checking of Fractical file/		
		3rd sessional test (Tentative)		
17^{th}	17^{th}	Checking of Practical file/		
		Evaluation.		
	•			